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The adiabatic plasma lens provides a mechanism for increasing the current density at
target by up to a factor of 10.  The physical setup consists of a tapered insulating tube
filled with a gas at <~ 1 torr density.  An external discharge (~10kV) initiates a current
(~50kA) along the length of the tapered tube. The adiabatically increasing azimuthal
magnetic field confines and further reduces the beam size as it traverses down the tube.
This tapered tube is located at the downstream end of a high-field focusing solenoid, and
immediately upstream of the target.

In this note, we describe the basic physics of the plasma lens, and present an HEDP
relevant numerical example at the end.

Charge and current neutralization

The fundamental premise of an adiabatic plasma lens is that the highly conducting
medium of the current-carrying channel provides total charge and current neutralizing for
the incoming ion beam. The particle dynamics therefore reduces to simple single particle
orbits in an azimuthal magnetic field.  A typical example would be a fully ionized
channel with a temperature of 7eV.  The conductivity is 

† 

s ~ 1014 sec-1 [units in cgs].
Charge neutralization takes place in a time exceedingly short relative to the pulse length

† 

t e =
1

4ps
~ 10-15 sec

In this environment, the magnetic field changes slowly.  The magnetic decay time is

† 

t m ~ 4psa2

c 2

For a typical millimeter-sized beam for HEDP, 

† 

t m ~ 12ns , which is much longer than the
beam pulse length (~ 1ns).   Hence over the pulse duration full charge and current
neutralization is a good approximation.

Particle dynamics in adiabatic discharge channel

Since the ions do not see any of the beam space charge, the particle dynamics reduces to
single particles in an external 

† 

Bq  field, given by

† 

d2x
dz2 = -k 2x

where 

† 

k 2 =
2I

a2 bMc 3 Ze( )

where x, 

† 

b , M, and Z are the transverse position, ion speed (normalized to speed of light
c), the mass, and charge of the ion respectively, and a discharge current I flows in a
channel of radius a. This formula assumes a radially uniform current density. The
generalization to non-uniform distribution is straightforward.



The betatron wave number k can vary with z, due to continuous stripping Z (z), as well as
channel tapering a (z). The solution to the Hill’s Equation

† 

d2x
dz2 = -k 2 z( )x

is easily obtained in the adiabatic approximation

† 

1
k 2

dk
dz

<<1

and is given by

† 

x =
c

k
1

2
ei kdzÚ

In practice, the adiabaticity condition can be met as long as the length of the channel Lc is

of the order of the batatron period at entrance 

† 

Li =
2p
ki

.

It is important to note that the amplitude of x is proportional to 

† 

k- 1
2 . As the channel

tapers, k increases and x is reduced. The beam envelope, R, which is the ensemble
average of the ions, will similarly decrease as it goes down the tapered tube.

Characteristics of beam transport in adiabatic channel

The picture of single particle transport in Z-pinch leads immediately to some general
conclusions:

1. The beam envelope within the channel is very insensitive to beam energy spread,
since
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Hence 40 % energy spread leads only to 5% variation in beam envelope.

2. Beam transport is insensitive to spread in ion charge state

† 

dx
x

~ 1
4

dZ
Z

3. The reduction of beam size, from initial beam radius Ri to final beam radius Rf, is

proportional to the square root of the taper ratio 

† 

ai

af

 where a is the channel radius
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4.  Finally, the channel can accommodate large emittances with sufficient channel
current. Assuming that the beam is in quasi-equilibrium at target, we have

† 

e f
2

Rf
2 =

2I
bMc 3 Ze

The final emittance 

† 

e f  at target may be slightly higher than the beam emittance ei

at entry into the discharge channel, depending on details of the channel current
radial distribution. If the distribution is uniform, then the emittance is preserved

† 

ei = e f

A numerical example

For Ne at 

† 

b = 0.045 and Z=7, we can reduce a beam radius from 1mm to 0.5mm
if the tapered tube has an initial radius of 2mm and final radius of 0.5mm
Assuming beam un-normalized edge emittance of 5x10-5p m-rad, the current
required is 20kA. The length of the tapered tube is 12 cm.

   


